Novel functional biodegradable polymer II: fibroblast growth factor-2 activities of poly(gamma-glutamic acid)-sulfonate |
| |
Authors: | Matsusaki Michiya Serizawa Takeshi Kishida Akio Akashi Mitsuru |
| |
Affiliation: | Department of Molecular Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan. |
| |
Abstract: | Basic fibroblast growth factor (FGF-2) mitogenic activities of sulfonated poly(gamma-glutamic acid) (gamma-PGA-S) were investigated with chlorate-treated L929 fibroblast culture tests. When 72% of the carboxyl groups in gamma-PGA were sulfonated (gamma-PGA-S72), cell numbers reached a maximum. The activity of gamma-PGA-S72 was higher than that of gamma-PGA and synthetic heparinoids and was almost comparable to that of heparin. Cytotoxicity of gamma-PGA-S72 was not observed, regardless of the degree of sulfonation. FGF-2-protective effects of gamma-PGA-S72 against acid and thermal inactivation were also evaluated, and gamma-PGA-S72 showed higher FGF-2-protective effects in comparison to nonsulfonated gamma-PGA. The steric structures of various sulfonated gamma-PGA-Ss were analyzed by molecular modeling (molecular orbital method (MOPAC)) and indicated that gamma-PGA-Ss are helical in vacuo. Results from MOPAC and the molecular mechanics method (MM2) demonstrated that electrostatic interactions can take place between sulfonic and carboxyl groups of gamma-PGA-S and basic amino acid residues in FGF-2. gamma-PGA-S72 can interact with FGF-2 strongly. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|