首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A Tripolar Spindle Formed at Meiosis I Assures the Retention of the Original Ploidy in the Gynogenetic Triploid Crucian Carp, Ginbuna Carassius auratus langsdorfii
Authors:Masakane Yamashita  Jianqiao Jiang  Hiroshi Onozato  Teruyuki Nakanishi  Yoshitaka Nagahama
Institution:Laboratory of Molecular and Cellular Interactions, Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060, Japan;Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444, Japan;National Research Institute of Aquaculture, Mie 516-01, Japan
Abstract:A triploid crucian carp, ginbuna ( Carassius auratus langsdorfii ), reproduces by gynogenesis, in which sperm of diploid ginbuna or of other species triggers the development of the triploid eggs, but a male genome makes no contribution to the zygotic genome. Gynogenesis is maintained by two mechanisms: exclusion of male genome during fertilization and retention of somatic ploidy levels during oogenesis. We examined the mechanisms responsible for producing unreduced eggs. Microfluorometry with a DNA staining dye showed that DNA content in the ginbuna oocytes was not reduced in half during meiosis I. Cytological observations revealed that a tripolar spindle was formed at meiosis I and the first polar body was not extruded, whereas an ordinary bipolar spindle was formed and the second polar body was extruded at meiosis II. Activity of histone H1 kinase (as an indicator of maturation-promoting factor) decreased transiently between meiosis I and II, strongly suggesting a "normal" meiotic cycle progression in the ginbuna oocytes. These results have indicated that in the gynogenetic ginbuna the somatic ploidy levels are maintained by inhibiting the first polar body extrusion via the formation of the tripolar spindle at meiosis I.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号