首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Earthworms promote greater richness and abundance in the emergence of plant species across a grassland-forest ecotone
Authors:Julia Clause  S  bastien Barot  Estelle Forey
Institution:1. Ecodiv URA/EA-1293, Normandie Université, Université de Rouen, IRSTEA, SFR Scale 4116, UFR Sciences et Techniques, 76821 Mont Saint Aignan Cedex, France;2. Centre de Formation sur l'Environnement et la Société (CERES), Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Paris Cedex 5, France;3. IRD – iEES Paris, 7, quai St Bernard, 75230 Paris Cedex 05, France
Abstract:Aims Chalk grasslands are subject to vegetation dynamics that range from species-rich open grasslands to tall and encroached grasslands, and woods and forests. In grasslands, earthworms impact plant communities and ecosystem functioning through the modification of soil physical, chemical and microbiological properties, but also through their selective ingestion and vertical transportation of seeds from the soil seed bank. Laboratory experiments showed that seed–earthworm interactions are species specific, but little is known on the impact of seed–earthworm interactions in the field. The overall aim of this study was to better understand seed–earthworm interactions and their impact on the plant community. First we analyzed the composition of seedlings emerging from casts after earthworm ingestion. Then we compared seedling composition in casts to the plant composition of emerging seedlings from the soil and of the aboveground vegetation along four stages of the secondary succession of chalk grasslands.Methods Four stages of the secondary succession of a chalk grassland—from open sward to woods—were sampled in Upper Normandy, France, in February 2010. Within each successional stage (×3 replicates), we sampled the standing vegetation, soil seed bank at three soil depths (0–2, 2–5 and 5–10cm) and earthworm surface casts along transects. Soil and cast samples were water sieved before samples were spread onto trays and placed into a greenhouse. Emerging seedlings were counted and identified. Effect of successional stage and origin of samples on mean and variability of abundance and species richness of seedlings emerging from casts and soil seed banks were analyzed. Plant compositions were compared between all sample types. We used generalized mixed-effect models and a distance-based redundancy multivariate analysis.Important findings Seedling abundance was always higher in earthworm casts than in the soil seed bank and increased up to 5-fold, 4-fold and 3.5-fold, respectively, in the tall grassland, woods and encroached grassland compared to the soil surface layer. Species richness was also higher in earthworm casts than in the soil seed bank in all successional stages, with a 4-fold increase in the encroached grassland. The plant composition of the standing vegetation was more similar to that of seedlings from casts than to that of seedlings from the soil seed bank. Seedlings diversity emerging from casts in the tall and encroached grasslands tended toward the diversity found in woods. Our results indicate that earthworms may promote the emergence of seedlings. We also suggest that the loss of some plant species in the seed bank and the tall grass vegetation in intermediary successional stages modify the local conditions and prevent the further establishment of early-successional plant species.
Keywords:aboveground-belowground interactions  earthworm casts  seedling emergence  secondary succession  seed bank  
点击此处可从《Journal of Plant Ecology》浏览原始摘要信息
点击此处可从《Journal of Plant Ecology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号