首页 | 本学科首页   官方微博 | 高级检索  
     


Managing methanogens and homoacetogens to promote reductive dechlorination of trichloroethene with direct delivery of H2 in a membrane biofilm reactor
Authors:Ziv-El Michal  Popat Sudeep C  Cai Katherine  Halden Rolf U  Krajmalnik-Brown Rosa  Rittmann Bruce E
Affiliation:Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, Tempe, Arizona 85287-5001, USA.
Abstract:A study with H(2)-based membrane biofilm reactors (MBfRs) was undertaken to examine the effectiveness of direct H(2) delivery in ex-situ reductive dechlorination of chlorinated ethenes. Trichloroethene (TCE) could be reductively dechlorinated to ethene with up to 95% efficiency as long as the pH-increase effects of methanogens and homoacetogens were managed and dechlorinators were selected for during start-up by creating H(2) limitation. Based on quantitative PCR, the dominant bacterial groups in the biofilm at the end of reactor operation were Dehalococcoides, Geobacter, and homoacetogens. Pyrosequencing confirmed the dominance of the dechlorinators and identified Acetobacterium as the key homoacetogen. Homoacetogens outcompeted methanogens for bicarbonate, based on the effluent concentration of acetate, by suppressing methanogens during batch start-up. This was corroborated by the methanogenesis functional gene mcrA, which was 1-2 orders of magnitude lower than the FTHFS functional gene for homoacetogens. Imaging of the MBfR fibers using scanning electron microscopy showed a distinct Dehalococcoides-like morphology in the fiber biofilm. These results support that direct addition of H(2) can allow for efficient and complete reductive dechlorination, and they shed light into how H(2)-fed biofilms, when operated to manage methanogenic and homoacetogenic activity, can be used for ex-situ bioremediation of chlorinated ethenes.
Keywords:membrane biofilm reactor  H2  reductive dechlorination  methanogenesis  homoacetogenesis
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号