Abstract: | Differential scanning colorimetry (DSC) has been applied to study the phase transition properties of isolated lipids from liver microsomal membranes of rats fed high cholesterol diets with or without high levels of either saturated (coconut oil) or unsaturated (sunflower seed oil) fat. DSC of aqueous buffer dispersions of liver microsomal lipids exhibited two independent, reversible phase transitions. The dietary cholesterol treatments had their major effect on the temperature at which the lower phase transition (T1) occurred. This transition occurred at a lower temperature when cholesterol was added to the diet, irrespective of the nature of the fatty acid supplement. However the magnitude of decrease was more when cholesterol was fed with sunflower seed oil. Inclusion of cholesterol into the rat diets also lowered the enthalpy values for the lower phase transition (T1). No appreciable effect on the temperature of the higher phase transition (T2) was observed, however the enthalpy values were slightly decreased by cholesterol feeding. These results suggest that certain domains of microsomal lipids, probably containing some relatively higher melting-point lipids, independently undergo solidus or gel formation and this transition (T2) is not greatly affected by dietary cholesterol. On the other hand, domains representing the bulk of the microsomal lipids undergo a phase change (T1) at temperatures which are dependent on cholesterol content and fatty acid profiles of the membrane, which are in turn, modified by dietary cholesterol intake. |