首页 | 本学科首页   官方微博 | 高级检索  
     


KcsA closed and open: modelling and simulation studies
Authors:John?Holyoake,Carmen?Domene,Joanne?N.?Bright,Mark?S.?P.?Sansom  mailto:mark@biop.ox.ac.uk"   title="  mark@biop.ox.ac.uk"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford , OX1 3QU, UK;(2) Present address: Research School of Chemistry, The Australian National University, 0200 Canberra, ACT , Australia
Abstract:
Bacterial homologues of mammalian potassium channels provide structures of two states of a gated K channel. Thus, the crystal structure of KcsA represents a closed state whilst that of MthK represents an open state. Using homology modelling and molecular dynamics simulations we have built a model of the transmembrane domain of KcsA in an open state and have compared its conformational stability with that of the same domain of KcsA in a closed state. Approximate Born energy calculations of monovalent cations within the two KcsA channel states suggest that the intracellular hydrophobic gate in the closed state provides a barrier of height ~5 kT to ion permeation, whilst in the open state the barrier is absent. Simulations (10 ns duration) in an octane slab (a simple membrane mimetic) suggest that closed- and open-state models are of comparable conformational stability, both exhibiting conformational drifts of ~3.3 Å Cagr RMSD relative to the respective starting models. Substantial conformational fluctuations are observed in the intracellular gate region during both simulations (closed state and open state). In the simulation of open-state KcsA, rapid (<5 ns) exit of all three K+ ions occurs through the intracellular mouth of the channel. Helix kink and swivel motion is observed at the molecular hinge formed by residue G99 of the M2 helix. This motion is more substantial for the open- than for the closed-state model of the channel.
Keywords:Homology modelling  Ion channels  Molecular dynamics simulations  Potassium channels
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号