首页 | 本学科首页   官方微博 | 高级检索  
     


Functional characterization of high-affinity Na(+)/dicarboxylate cotransporter found in Xenopus laevis kidney and heart
Authors:Oshiro Naomi  Pajor Ana M
Affiliation:Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0645, USA.
Abstract:The SLC13 gene family includes sodium-coupled transporters for citric acid cycle intermediates and sulfate. The present study describes the sequence and functional characterization of a SLC13 family member from Xenopus laevis, the high-affinity Na+/dicarboxylate cotransporter xNaDC-3. The cDNA sequence of xNaDC-3 codes for a protein of 602 amino acids that is ~70% identical to the sequences of mammalian NaDC-3 orthologs. The message for xNaDC-3 is found in the kidney, liver, intestine, and heart. The xNaDC-3 has a high affinity for substrate, including a Km for succinate of 4 µM, and it is inhibited by the NaDC-3 test substrates 2,3-dimethylsuccinate and adipate. The transport of succinate by xNaDC-3 is dependent on sodium, with sigmoidal activation kinetics, and lithium can partially substitute for sodium. As with other members of the family, xNaDC-3 is electrogenic and exhibits inward substrate-dependent currents in the presence of sodium. However, other electrophysiological properties of xNaDC-3 are unique and involve large leak currents, possibly mediated by anions, that are activated by binding of sodium or lithium to a single site. SLC13 gene family; citric acid cycle intermediate; lithium
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息
点击此处可从《American journal of physiology. Cell physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号