Disruption of virion host shutoff activity improves the immunogenicity and protective capacity of a replication-incompetent herpes simplex virus type 1 vaccine strain |
| |
Authors: | Geiss B J Smith T J Leib D A Morrison L A |
| |
Affiliation: | Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA. |
| |
Abstract: | The virion host shutoff (vhs) protein encoded by herpes simplex virus type 1 (HSV-1) destabilizes both viral and host mRNAs. An HSV-1 strain with a mutation in vhs is attenuated in virulence and induces immune responses in mice that are protective against corneal infection with virulent HSV-1, but it has the capacity to establish latency. Similarly, a replication-incompetent HSV-1 strain with a mutation in ICP8 elicits an immune response protective against corneal challenge, but it may be limited in viral antigen production. We hypothesized therefore that inactivation of vhs in an ICP8(-) virus would yield a replication-incompetent mutant with enhanced immunogenicity and protective capacity. In this study, a vhs(-)/ICP8(-) HSV-1 mutant was engineered. BALB/c mice were immunized with incremental doses of the vhs(-)/ICP8(-) double mutant or vhs(-) or ICP8(-) single mutants, or the mice were mock immunized, and protective immunity against corneal challenge with virulent HSV-1 was assessed. Mice immunized with the vhs(-)/ICP8(-) mutant showed prechallenge serum immunoglobulin G titers comparable to those immunized with replication-competent vhs(-) virus and exceed those of mice immunized with the ICP8(-) single mutant. Following corneal challenge, the degrees of protection against ocular disease, weight loss, encephalitis, and establishment of latency were similar for vhs(-)/ICP8(-) and vhs(-) virus-vaccinated mice. Moreover, the double deleted vhs(-)/ICP8(-) virus protected mice better in all respects than the single deleted ICP8(-) mutant virus. The data indicate that inactivation of vhs in a replication-incompetent virus significantly enhances its protective efficacy while retaining its safety for potential human vaccination. Possible mechanisms of enhanced immunogenicity are discussed. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|