Inflammation in Response to n3 Fatty Acids in a Porcine Obesity Model |
| |
Authors: | Richard J Faris Rebecca L Boddicker Jennifer Walker-Daniels Jenny Li Douglas E Jones Michael E Spurlock |
| |
Affiliation: | 1.Interdepartmental Graduate Program in Nutritional Sciences;2.Department of Animal Science;3.Department of Food Science and Human Nutrition;4.Department of Veterinary Pathology, and;5.Nutrition and Wellness Research Center, Iowa State University, Ames, Iowa |
| |
Abstract: | Fatty acids have distinct cellular effects related to inflammation and insulin sensitivity. Dietary saturated fat activates toll-like receptor 4, which in turn can lead to chronic inflammation, insulin resistance, and adipose tissue macrophage infiltration. Conversely, n3 fatty acids are generally antiinflammatory and promote insulin sensitivity, in part via peroxisome proliferator-activated receptor γ. Ossabaw swine are a useful biomedical model of obesity. We fed Ossabaw pigs either a low-fat control diet or a diet containing high-fat palm oil with or without additional n3 fatty acids for 30 wk to investigate the effect of saturated fats and n3 fatty acids on obesity-linked inflammatory markers. The diet did not influence the inflammatory markers C-reactive protein, TNFα, IL6, or IL12. In addition, n3 fatty acids attenuated the increase in inflammatory adipose tissue CD16–CD14+ macrophages induced by high palm oil. High-fat diets with and without n3 fatty acids both induced hyperglycemia without hyperinsulinemia. The high-fat only group but not the high-fat group with n3 fatty acids showed reduced insulin sensitivity in response to insulin challenge. This effect was not mediated by decreased phosphorylation of protein kinase B. Therefore, in obese Ossabaw swine, n3 fatty acids partially attenuate insulin resistance but only marginally change inflammatory status and macrophage phenotype in adipose tissue.Abbreviations: AMPKα, AMP-activated protein kinase α, CRP, C-reactive protein, DHA, docosahexanoic acid, EPA, eicosapentanoic acid, HFP, high-fat palm-oil diet, HFPn3, high-fat palm-oil diet supplemented with n3 fatty acids, HOMA-IR, homeostasis model of assessment–, insulin resistance, LFC, low-fat control diet, PKB, protein kinase B, PUFA, polyunsaturated fatty acidsObesity is accompanied by chronic inflammation in adipose tissue; increased circulating concentrations of TNFα, IL6, and C-reactive protein (CRP); and decreased concentrations of adiponectin.2 This chronic inflammation links obesity and the development of insulin resistance.39 Dietary saturated fatty acids promote obesity in part through the induction of inflammation via activation of toll-like receptor 4 (the innate immune receptor for LPS).28 The absence of functional tlr4 in mice reduces circulating proinflammatory cytokine concentrations and decreases macrophage infiltration into adipose tissue during high-fat diet-induced obesity.8,28,32 Furthermore, in 3T3 L1 mouse adipocytes, palmitate activates NFκB, protein kinase C, and mitogen-activated protein kinase, all of which increase the production of inflammatory cytokines.1For people who consume a diet high in saturated fat, a major determinant of health is the ratio of omega-6 to omega-3 fatty acids (that is, n6:n3) that is consumed.5,6 Unlike saturated fatty acids, the n3 polyunsaturated fatty acids (PUFA) eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) exert predominantly antiinflammatory effects, as is evident in that DHA antagonizes NFκB activation by palmitate in 3T3 L1 adipocytes.1 In mice, EPA prevents or reverses hyperinsulinemia, hyperglycemia, and increased circulating monocyte chemotatic protein 116 and decreases infiltration of adipose tissue with macrophages.30 Moreover, n3 PUFA alleviate the decline in serum adiponectin that is associated with obesity,12,15,30 and EPA decreases serum CRP in diabetic patients.26Physiologic differences between rodents and humans underscore the need for comparative models in biomedical research, and the pig is emerging rapidly as a model for studies of energy metabolism and obesity. Like humans, pigs are natural omnivores, rely on apolipoprotein B100 to shuttle cholesterol in the LDL fraction, and have minimal brown fat retention postnatally. Furthermore, adipose depots in pigs are of sufficient size that multiple assays can be done on adipocytes or stromal vascular cells without pooling across depots or animals. Although Ossabaw swine have been used as models for metabolic syndrome, cardiovascular disease, coronary artery disease, and steatohepatisis,11,20,24 little is known about adipose inflammation in these animals. Consequently, we sought to characterize obesity-linked inflammatory markers in the adipose tissue of this novel model and to test the hypothesis that adding n3 PUFA to a diet high in saturated fat attenuates chronic inflammation, protects against diet-induced insulin resistance, and alters phenotypic changes in adipose tissue macrophages. |
| |
Keywords: | |
|
|