首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sperm chromatin structure integrity in liquid stored boar semen and its relationships with field fertility
Authors:Boe-Hansen G B  Christensen P  Vibjerg D  Nielsen M B F  Hedeboe A M
Institution:Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Life Sciences, University of Copenhagen, Dyrlaegevej 68, 1870 Frederiksberg, Denmark. gbh@life.ku.dk
Abstract:Extended semen doses from some boars used for AI have been shown to develop high levels of sperm DNA fragmentation during storage. Studies in other animals and humans have shown that if DNA damage is present in a certain percentage of the sperm cells the fertility potential of the semen sample is reduced. The objectives of the present study was to determine the relationship between sperm DNA fragmentation measured using the sperm chromatin structure assay (SCSA) in extended stored semen and field fertility in the boar. Three ejaculates from each of 145 boars were collected. Preparation of the semen doses included dilution with an EDTA extender and storage for up to 72 h post collection. The semen doses were assessed using flow cytometric methods for the percentage of viable sperm (PI/SYBR-14) and sperm DNA fragmentation (SCSA) at 0, 24, 48, and 72 h. A total of 3276 experimental inseminations in Danish breeding herds were conducted. The results showed that for 11 (7.6%) of the boars at least one of the three samples showed a value of DNA fragmentation index (DFI) above 20% within the storage period. Total number of piglets born (litter size) for Hampshire, Landrace and Danish Large White boars was, respectively, 0.5, 0.7 and 0.9 piglets smaller per litter when DFI values were above 2.1% as opposed to below this value. In conclusion the SCSA technique appears to be able to identify individuals with lower fertility with respect to litter size, and could in the future be implemented by the pig industry after a cost-benefit analysis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号