首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inhibition of cell metabolism by a smokeless tobacco extract: tissue and species specificity.
Authors:L G Lenz  W K Ramp  R J Galvin  W M Pierce
Institution:Department of Oral Health, University of Louisville, Kentucky 40292.
Abstract:Smokeless tobacco contains a nonnicotine inhibitor of posttranslational modification of collagen (hydroxylation of 3H]proline) by cultured chick embryo tibias and osteoblasts. This study was undertaken to determine whether a methanol extract of smokeless tobacco (STE) containing the inhibitor has similar effects on collagen-producing cells and tissues other than bone. Its effects on DNA synthesis and cell proliferation (incorporation of 3H]thymidine) were also determined. Frontal bone, aorta, and cartilage were incubated for 2 days in medium containing STE. Glycolysis (lactate production) was stimulated by 80% in cartilage, but was not affected in the other tissues; medium alkaline phosphatase activity was unaffected. In frontal bone and cartilage, 3H] hydroxyproline content was decreased 88% and 57%, respectively, and 3H]proline content was decreased 68% and 37%, respectively; neither was affected in the aorta. Confluent cultures of collagen-producing mouse fibroblasts or primary osteoblasts obtained from chick embryo calvarias were incubated for 2 days in medium containing increasing concentrations of STE. Glycolysis and DNA synthesis were not affected. Cell proliferation was unaffected in fibroblasts, but was inhibited (34%) at the highest STE concentration in osteoblasts. AIPase activity was not detectable in fibroblast medium, but was decreased up to 72% in osteoblast medium. Inhibition of collagen synthesis by STE was concentration related in both cell types. At the highest concentration, 3H] hydroxyproline and 3H]proline contents in the cell layers were decreased to the following respective values: fibroblasts 56% and 45% and osteoblasts 50% and 29%, respectively. When incubation with STE was discontinued for 1 day, recovery did not occur. These findings suggest that inhibition of collagen synthesis by STE is not specific for bone, that collagen-producing cells are directly affected, and that recovery is not immediate. This inhibitor could contribute to the periodontal disease often seen in users of smokeless tobacco. Its identification and removal would produce a safer product.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号