首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Heparin-like polysaccharides reduce osteolytic bone destruction and tumor growth in a mouse model of breast cancer bone metastasis
Authors:Pollari Sirkku  Käkönen Rami S  Mohammad Khalid S  Rissanen Jukka P  Halleen Jussi M  Wärri Anni  Nissinen Liisa  Pihlavisto Marjo  Marjamäki Anne  Perälä Merja  Guise Theresa A  Kallioniemi Olli  Käkönen Sanna-Maria
Institution:VTT Technical Research Centre of Finland and Turku Centre for Biotechnology, University of Turku, PO Box 106, Turku 20520, Finland. sielpo@utu.fi
Abstract:TGF-β regulates several steps in cancer metastasis, including the establishment of bone metastatic lesions. TGF-β is released from bone during osteoclastic bone resorption and it stimulates breast cancer cells to produce osteolytic factors such as interleukin 11 (IL-11). We conducted a cell-based siRNA screen and identified heparan sulfate 6-O-sulfotransferase 2 (HS6ST2) as a critical gene for TGF-β-induced IL-11 production in highly bone metastatic MDA-MB-231(SA) breast cancer cells. HS6ST2 attaches sulfate groups to glucosamine residues in heparan sulfate glycosaminoglycans. We subsequently showed how heparin and a high-molecular-weight Escherichia coli K5-derived heparin-like polysaccharide (K5-NSOS) inhibited TGF-β-induced IL-11 production in MDA-MB-231(SA) cells. In addition, K5-NSOS inhibited bone resorption activity of human osteoclasts in vitro. We evaluated the therapeutic potential of K5-NSOS and fragmin in a mouse model of breast cancer bone metastasis. MDA-MB-231(SA) cells were inoculated into the left cardiac ventricle of athymic nude mice which were treated with fragmin, K5-NSOS, or vehicle once a day for four weeks. Both heparin-like glycosaminoglycans inhibited weight reduction, decreased osteolytic lesion area, and reduced tumor burden in bone. In conclusion, our data imply novel mechanisms involved in TGF-β induction and support the critical role of heparan sulfate glycosaminoglycans in cancer metastasis as well as indicate that K5-NSOS is a potential antimetastatic and antiresorptive agent for cancer therapy. This study illustrates the potential to translate in vitro siRNA screening results toward in vivo therapeutic concepts.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号