首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cytosolic acidification leads to Ca mobilization from intracellular stores in single and populational parietal cells and platelets
Authors:Yasuhiro Tsunoda  Kazuhiko Matsuno  Yutaka Tashiro
Abstract:Regulatory relationship and gain control between cytosolic free Ca2+ concentration (Cai) and cytosolic pH (pHi) were evaluated by two different cell types, gastric parietal cells, and blood platelets. Studies were carried out in both single cells and populations of cells, using Ca2+-indicative probe fura-2 (1-(2-(5′-carboxyoxazol-2′-yl)-6-aminobenzofuran-5-oxy)-2-(2′-amino-5′-methylphenoxy) ethane-N,N,N′,N′-tetraacetic acid) and pH-indicative probe BCECF (2′,7′-bis(carboxyethyl) carboxyfluorescein). Stimulation of single and populational parietal cells and platelets with gastrin and thrombin, respectively, resulted in an increase in Cai. In both populational cell types, an initial change in pHi during agonist stimulation occurred almost simultaneously with the mobilization of Ca2+; an initial transient decrease in pHi was followed by a slower increase in pHi above the prestimulation level. When populational platelets were preloaded with the Ca2+ chelator BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′tetraacetic acid), the thrombin-induced initial large increase in Cai was apparently inhibited, whereas the pHi decrease induced by thrombin was not altered. This suggests that the initial Cai change is not a prerequisite for the pHi change. The effect of pHi on Cai was examined next. In both single and populational cell types, application of the K+-H+ ionophore nigericin, which induced a transient decrease in pHi, led to the release of Ca2+ from intracellular stores. In single parietal cells double-labeled with fura-2 and BCECF, a temporal decrease in pHi preceded the rise in Cai after stimulation with nigericin. A decrease in pHi, and an increase in Cai occurred at 1.5 and 4 s, respectively. In single parietal cells, replacement of medium Na+ with N-methyl- -glucamine (NMG+), which also induced a decrease in pHi, resulted in repetitive Ca2+ spike oscillations. The source of Ca2+ utilized for the Ca2+ oscillation that was induced by NMG+ originated from the agonist-sensitive pool. Thus, several maneuvers, which were capable of decreasing pHi, led to an increase in Cai. Cytosolic acidification may be a part of the trigger for Ca2+ mobilization from intracellular stores in both parietal cells and platelets.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号