首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Segmentation of Extrapulmonary Tuberculosis Infection Using Modified Automatic Seeded Region Growing
Authors:Iman Avazpour  M Iqbal Saripan  Abdul Jalil Nordin  Raja Syamsul Azmir Raja Abdullah
Institution:(1) Department of Computer and Communication, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Malaysia;(2) Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
Abstract:In the image segmentation process of positron emission tomography combined with computed tomography (PET/CT) imaging, previous works used information in CT only for segmenting the image without utilizing the information that can be provided by PET. This paper proposes to utilize the hot spot values in PET to guide the segmentation in CT, in automatic image segmentation using seeded region growing (SRG) technique. This automatic segmentation routine can be used as part of automatic diagnostic tools. In addition to the original initial seed selection using hot spot values in PET, this paper also introduces a new SRG growing criterion, the sliding windows. Fourteen images of patients having extrapulmonary tuberculosis have been examined using the above-mentioned method. To evaluate the performance of the modified SRG, three fidelity criteria are measured: percentage of under-segmentation area, percentage of over-segmentation area, and average time consumption. In terms of the under-segmentation percentage, SRG with average of the region growing criterion shows the least error percentage (51.85%). Meanwhile, SRG with local averaging and variance yielded the best results (2.67%) for the over-segmentation percentage. In terms of the time complexity, the modified SRG with local averaging and variance growing criterion shows the best performance with 5.273 s average execution time. The results indicate that the proposed methods yield fairly good performance in terms of the over- and under-segmentation area. The results also demonstrated that the hot spot values in PET can be used to guide the automatic segmentation in CT image.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号