首页 | 本学科首页   官方微博 | 高级检索  
     


Conformation of a peptide encompassing the proton translocation channel of vacuolar H(+)-ATPase
Authors:Vos Werner L  Vermeer Louic S  Hemminga Marcus A
Affiliation:Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands.
Abstract:
The structural properties of a crucial transmembrane helix for proton translocation in vacuolar ATPase are studied using double site-directed spin-labeling combined with electron spin resonance (ESR) (or electron paramagnetic resonance) and circular dichroism spectroscopy in sodium dodecyl sulfate micelles. For this purpose, we use a synthetic peptide derived from transmembrane helix 7 of subunit a from the yeast Saccharomyces cerevisiae vacuolar proton-translocating ATPase that contains two natural cysteine residues suitable for spin-labeling. The interspin distance is calculated using a second-moment analysis of the methanethiosulfonate spin-label ESR spectra at 150 K. Molecular dynamics simulation is used to study the effect of the side-chain dynamics and backbone dynamics on the interspin distance. Based on the combined results from ESR, circular dichroism, and molecular dynamics simulation we conclude that the peptide forms a dynamic alpha-helix. We discuss this finding in the light of current models for proton translocation. A novel role for a buried charged residue (H729) is proposed.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号