首页 | 本学科首页   官方微博 | 高级检索  
     


Special symposium: In vitro plant recalcitrance recalcitrance of woody and herbaceous perennial plants: Dealing with genetic predeterminism
Authors:Brent H. McCown
Affiliation:(1) Department of Horticulture, University of Wisconsin-Madison, 53706 Madison, Wisconsin
Abstract:Summary As a general, long-lived perennial plants probably present the most challenging obstecles to the researcher, breeder or propagator utilizing microculture as a tool. These challenges appear during all stages of the microculture process, but are probably most resplendent during the stabilization phase. What may be particularly frustrating is that much of this ‘recalcitrance’ is genetically driven and is thus difficult to control by environmental and nutritional manipulations in microculture. Perennials have complex seasonal cycles and life cycles, which complicate control of their growth in microculture. As shoot cultures have provided useful tools for overcoming these limitations, the inability to establish stabilized shoot cultures is a major form of recalcitrance. Plants having seasonal growth dynamics dominated by strong episodic or determinant shoot growth are some of the most recalcitrant species because stabilized shoot cultures cannot be readily generated. In some cases, episodic growth may be tied closely to phase state and can thus be controlled by manipulating phase; nevertheless, adequate controls have not been identified for many problematic plants. Another trait contributing to recalcitrance of perennials is the relatively slow growth rate in microculture. Slow growth complicates such procedures as selection of transformed tissues. The high phenolic content of many perennial tissues can interfere with the efficacy of transgenic traits such as β-glucuronidase. Developmentally determined growth characteristics such as plagiotropism may persist through all stages of microculture and complicate the recovery of commercially useful micropropagules. Although some technical approaches can occasionally circumvent immediate microculture limitations, general solutions await the development of a deeper understanding of physiological bases of such genetically predetermined phenomena.
Keywords:phase state  shoot culture  determinant growth  episodic growth  transgene efficacy  plagiotropism  stabilization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号