首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structure, function, and motility of vacuoles in filamentous fungi
Authors:L Cole  DA Orlovich  AE Ashford
Institution:School of Biological Science, The University of New South Wales, Sydney, New South Wales, 2052, Australia.
Abstract:Current information on the structure and function of motile tubular vacuoles in Pisolithus tinctorius and other fungi is reviewed. The use of fluorochromes to label the vacuole lumen is evaluated and observations on the structure and motility of vacuoles in P. tinctorius are differentiated from possible artifacts. The styryl dyes FM4-64 and MDY-64, used in yeast to demonstrate endocytosis, show little or no labeling of internal membranes in undamaged P. tinctorius cells. This agrees with our data showing that other probes for endocytosis such as Lucifer yellow CH are not taken up by hyphal tip cells. Overall, the observations do not support endocytosis in hyphal tips. It has been suggested that tubular vacuole systems carry out longitudinal transport, and evidence in favor of this hypothesis is evaluated. New data are presented to show that many of the large vacuoles in subapical cells are attached to the plasma membrane and are relatively immobile, while video sequences show movement of fluorochrome in pulses along a series of several large vacuoles, all interconnected via tubules. Tubular vacuoles from thick sections of hyphae processed under anhydrous conditions are shown by X-ray microanalysis to contain relatively high levels of P and K, as seen previously in the larger vacuoles. These results provide further evidence for a role of the tubular vacuoles in longitudinal transport of P. Copyright 1998 Academic Press.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号