首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dynamic actions of glucose and glucosamine on hexosamine biosynthesis in isolated adipocytes: differential effects on glucosamine 6-phosphate, UDP-N-acetylglucosamine, and ATP levels
Authors:Marshall Stephen  Nadeau Owen  Yamasaki Kazumitsu
Institution:Hexos, Inc., Woodinville, Washington 98072, USA.
Abstract:Glucose and glucosamine (GlcN) cause insulin resistance over several hours by increasing metabolite flux through the hexosamine biosynthesis pathway (HBP). To elucidate the early events underlying glucose-induced desensitization, we treated isolated adipocytes with either glucose or GlcN and then measured intracellular levels of glucose-6-P (G-6-P), GlcN-6-P, UDP-Glc-NAc, and ATP. Glucose treatment rapidly increased G-6-P levels (t((1/2)) < 1 min), which plateaued by 15 min and remained elevated for up to 4 h (glucose ED(50) = 4mm). In glucose-treated cells, GlcN-6-P was undetectable; however, GlcN treatment (2 mm) caused a rapid and massive accumulation of GlcN-6-P. Levels increased by 5 min ( approximately 400 nmol/g) and continued to rise over 2 h (t((1/2)) approximately 20 min) before reaching a plateau at >1,400 nmol/g (ED(50) = 900 microm). Thus, at high GlcN concentrations, unrestricted flux into the HBP greatly exceeds the biosynthetic capacity of the pathway leading to a rapid buildup of GlcN-6-P. The GlcN-induced rise in GlcN-6-P levels was correlated with ATP depletion, suggesting that ATP loss is caused by phosphate sequestration (with the formation of GlcN-6-P) or the energy demands of phosphorylation. As expected, GlcN and glucose increased UDP-GlcNAc levels (t((1/2)) approximately 14-18 min), but greater levels were obtained with GlcN (4-5-fold for GlcN, 2-fold for glucose). Importantly, we found that low doses of GlcN (<250 microm, ED(50) = 80 microm) could markedly elevate UDP-GlcNAc levels without increasing GlcN-6-P levels or depleting ATP levels. These studies on the dynamic actions of glucose and GlcN on hexosamine levels should be useful in exploring the functional role of the HBP and in avoiding the potential pitfalls in the pharmacological use of GlcN.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号