首页 | 本学科首页   官方微博 | 高级检索  
     


Plant community structure in an oligohaline tidal marsh
Authors:J. Stephen Brewer  James B. Grace
Affiliation:(1) Department of Botany, Louisiana State University, 70803 Baton Rouge, LA, USA
Abstract:An oligohaline tidal marsh on the northern shore of Lake Pontchartrain, LA was characterized with respect to the distributions and abundances of plant species over spatial and temporal gradients using Detrended Correspondence Analysis (DCA). In addition, the species distributions were correlated to several physical environmental factors using Detrended Canonical Correspondence Analysis (DCCA). The distributions of species were best correlated with distance from Lake Pontchartrain, and to a lesser extent with elevation and substrate organic matter. They were least correlated with mean soil salinity (referred to here as background salinity). Of the three mid-seasonal dominant species, the perennial grass, Spartina patens, is the most salt tolerant and was found closest to the lake. Further inland the dominant perennial was Sagittaria lancifolia, which has a salt tolerance less than that of Spartina patens. The perennial sedge, Cladium jamaicense, which is the least salt tolerant of the three, was dominant furthest inland. Background salinity levels were generally low (<5 ppt.) and did not explain species distributions. We hypothesize that the distribution of species is regulated by occasional storm-generated lsquosalt pulsesrsquo that generate strong, short-lived salinity gradients as a function of distance from the lake. Biotic interactions likely also play a role in structuring the plant community. The distributions of several annuals depended on the size and life history of the mid-seasonal dominant perennials. Most of the annuals frequently co-occurred with Sagittaria lancifolia, which was the shortest in stature and had the least persistent canopy of the three mid-seasonal dominant perennials.Abbreviations DCA Detrended Correspondence Analysis - DCCA Detrended Canonical Correspondence Analysis
Keywords:Canopy Persistence  Elevation  Organic Matter  Salinity  Salt Pulses  Salt Tolerance
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号