Abstract: | The regeneration of surface anionic groups in mouse peritoneal macrophages was investigated by electron microscopy, using cationized ferritin (CF) as a tool for the localization and evaluation of negative charge density on the cell surface. In vitro interaction of living macrophages with CF resulted in removal of most anionic groups, either by concentration of their receptor sites to a part of the membrane which is subsequently internalized, or by detachment of the aggregated label from the surface. After incubation of macrophages lacking surface anionic groups in tissue culture medium without the ligand, regeneration of the binding capacity for CF took place within 3 h. The first regenerated parts of the membrane can be visualized within 1 h on the upper part of the adherent cells; there is a discontinuous coating of ferritin, with the lateral regions of the plasmalemma free of label. The attached CF particles on the regenerated membrane are closer to the membrane and their density is considerably higher than on the normal control macrophages. The results indicate that the turnover of the plasmalemma is regional and not dispersed; the mechanism involved is insertion of membrane patches into the pre-existing plasma membrane. |