Assignment and secondary structure of calcium-bound human S100B |
| |
Authors: | Steven P. Smith Gary S. Shaw |
| |
Affiliation: | (1) Department of Biochemistry and McLaughlin Macromolecular Structure Facility, University of Western Ontario, London, ON, Canada, N6A 5C1 |
| |
Abstract: | ![]() The NMR assignments of backbone 1H, 13C,and 15N resonances for calcium-bound human S100B werecompleted via heteronuclear multidimensional NMR spectroscopic techniques.NOE correlations, amide exchange, 3JHNH coupling constants, and CSI analysis were used to identify the secondarystructure for Ca-S100B. The protein is comprised of four helices (helix I,Glu2-;Arg20; helix II,Glu31-;Asn38; helix III,Gln50-;Thr59; helix IV,Phe70-;Phe87), three loops (loop I,Glu21-;His25; loop II,Glu39-;Glu49; loop III,Leu60-;Gly66), and two -strands(strand I, Lys26>-;Lys28; strand II,Glu67-;Asp69) which form a shortantiparallel -sheet. Helix IV is extended by approximately one turnwhen compared to the secondary structures of apo-rat [Drohat et al. (1996)Biochemistry, 35, 11577-;11588] and bovine S100B [Kilby et al. (1996)Structure, 4, 1041-;1052]. In addition, several residues outside thecalcium-binding loops in S100B undergo significant backbone chemical shiftchanges upon binding calcium which are not observed in the related proteincalbindin D9k. Together these observations support previoussite-directed mutagenesis, absorption spectroscopy, and cysteine chemicalreactivity experiments, suggesting that the C-terminus in Ca-S100B isimportant for interactions with other proteins. |
| |
Keywords: | S100B Calcium-bound Secondary structure S100 protein family |
本文献已被 SpringerLink 等数据库收录! |
|