首页 | 本学科首页   官方微博 | 高级检索  
   检索      

嗜热丁烷氧化古菌Candidatus Syntrophoarchaeum烷基转移酶MtaA催化丁基辅酶M的分子机制研究
引用本文:王瑾,田晓翩,李政新,陈海峰,王风平.嗜热丁烷氧化古菌Candidatus Syntrophoarchaeum烷基转移酶MtaA催化丁基辅酶M的分子机制研究[J].微生物学通报,2021,48(10):3401-3408.
作者姓名:王瑾  田晓翩  李政新  陈海峰  王风平
作者单位:上海交通大学生命科学技术学院 微生物代谢国家重点实验室 上海 200240
基金项目:国家重点研发计划(2018YFC0310803);国家自然科学基金(91751205,41867057)
摘    要:【背景】嗜热古菌Candidatus Syntrophoarchaeum可以与硫酸盐还原细菌共生,通过逆转产甲烷途径进行正丁烷的氧化,但在该过程中负责催化丁基辅酶M氧化的酶尚未确定。【目的】利用分子动力学模拟证明Ca.Syntrophoarchaeum中mta A基因编码的蛋白可以特异性催化丁基辅酶M中丁基的转移,并非转移甲基。【方法】使用Methanosarcina mazei辅酶M甲基转移酶Mta A的晶体结构(PDB ID:4ay8)作为模板,对Mta A_1 (Gen Bank登录号OFV65993.1)和Mta A_2 (Gen Bank登录号OFV65678.1)进行同源建模。使用分子对接得到两者分别结合CH_3-Co M和C_4H_9-Co M时的结构,并用AMBER18进行分子动力学模拟。【结果】当Mta A_1和Mta A_2分别结合C_4H_9-Co M时,表现出与4ay8晶体结构类似的TIM-Barrel折叠三维结构,但在活性中心形状、Zn~(2+)与底物距离以及活性位点附近氨基酸配位方式等方面存在差异,这可能是导致Ca.Syntrophoarchaeum中mta A基因编码的蛋白催化丁基辅酶M氧化的原因。其中Mta A_2与4ay8结构更相似,活性中心氨基酸配位更完整,暗示其更可能具备催化活性。然而当Mta A_1和Mta A_2分别结合CH_3-Co M时,整体结构不合实际,活性中心Zn~(2+)与底物距离过远,表明底物几乎不可能与酶结合。【结论】Ca.Syntrophoarchaeum中的Mta A_1和Mta A_2很可能是特异性的丁基转移酶,而非催化甲基的转移,其中Mta A_2具备活性的可能性更高。

关 键 词:Candidatus  Syntrophoarchaeum  丁烷厌氧氧化  烷基转移酶  分子动力学模拟
收稿时间:2021/3/15 0:00:00

Molecular mechanism of the alkyl-transferase MtaA catalyzing butyl-CoM in the thermophilic butane-oxidizing archaea Candidatus Syntrophoarchaeum
WANG Jin,TIAN Xiaopian,LI Zhengxin,CHEN Haifeng,WANG Fengping.Molecular mechanism of the alkyl-transferase MtaA catalyzing butyl-CoM in the thermophilic butane-oxidizing archaea Candidatus Syntrophoarchaeum[J].Microbiology,2021,48(10):3401-3408.
Authors:WANG Jin  TIAN Xiaopian  LI Zhengxin  CHEN Haifeng  WANG Fengping
Institution:State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract:Background] Thermophilic archaea Candidatus Syntrophoarchaeum was found to coexist with sulfate-reducing bacteria and oxidize n-butane by the reverse methanogenesis pathway. However, in this process, the enzyme responsible for catalyzing the oxidation of butyl-CoM has not been determined yet. Objective] Using molecular dynamics simulation to prove that the enzymes encoded by mtaA genes found in Ca. Syntrophoarchaeum can specifically catalyze the transfer of butyl in butyl-CoM, and they are not methyltransferases. Methods] Using the crystal structure of Methanosarcina mazei coenzyme M methyltransferase MtaA (PDB ID:4ay8) as a template, homology modeling of MtaA_1 (GenBank ID:OFV65993.1) and MtaA_2 (GenBank ID:OFV65678.1) was performed. Molecular docking was used to obtain the structure when they were combined with CH3-CoM and C4H9-CoM respectively, and AMBER18 was used for molecular dynamics simulation. Results] When combined with C4H9-CoM, MtaA_1 and MtaA_2 exhibited a TIM-barrel-like three-dimensional structure similar to the fold of 4ay8. However, there are differences in the shape of the active site, the distance between Zn2+ and the substrate, and the coordination of amino acid residues around the active site. These differences may be the reason why the enzymes encoded by mtaA genes found in Ca. Syntrophoarchaeum catalyze the oxidation of butyl-CoM. The overall structure of MtaA_2 is more similar to 4ay8, and the coordination of residues around the active site is complete, suggesting that MtaA_2 is more likely to be active. When MtaA_1 and MtaA_2 bind to CH3-CoM respectively, their overall structures are unrealistic, and the coordinated Zn2+ is too far away from the substrate, indicating that CH3-CoM is almost impossible to bind to the enzyme. Conclusion] MtaA_1 and MtaA_2 of Ca. Syntrophoarchaeum are likely to be specific butyl-transferases rather than catalyzing the transfer of methyl groups, and MtaA_2 is more likely to be active.
Keywords:Candidatus Syntrophoarchaeum  anaerobic oxidation of butane  alkyl-transferase  molecular dynamics simulation
本文献已被 CNKI 等数据库收录!
点击此处可从《微生物学通报》浏览原始摘要信息
点击此处可从《微生物学通报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号