首页 | 本学科首页   官方微博 | 高级检索  
     


Methylcytosine and Normal Cytosine Deamination by the Foreign DNA Restriction Enzyme APOBEC3A
Authors:Michael A. Carpenter  Ming Li  Anurag Rathore  Lela Lackey  Emily K. Law  Allison M. Land  Brandon Leonard  Shivender M. D. Shandilya  Markus-Frederik Bohn  Celia A. Schiffer  William L. Brown  Reuben S. Harris
Affiliation:From the Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 and ;the §Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
Abstract:Multiple studies have indicated that the TET oxidases and, more controversially, the activation-induced cytidine deaminase/APOBEC deaminases have the capacity to convert genomic DNA 5-methylcytosine (MeC) into altered nucleobases that provoke excision repair and culminate in the replacement of the original MeC with a normal cytosine (C). We show that human APOBEC3A (A3A) efficiently deaminates both MeC to thymine (T) and normal C to uracil (U) in single-stranded DNA substrates. In comparison, the related enzyme APOBEC3G (A3G) has undetectable MeC to T activity and 10-fold less C to U activity. Upon 100-fold induction of endogenous A3A by interferon, the MeC status of bulk chromosomal DNA is unaltered, whereas both MeC and C nucleobases in transfected plasmid DNA substrates are highly susceptible to editing. Knockdown experiments show that endogenous A3A is the source of both of these cellular DNA deaminase activities. This is the first evidence for nonchromosomal DNA MeC to T editing in human cells. These biochemical and cellular data combine to suggest a model in which the expanded substrate versatility of A3A may be an evolutionary adaptation that occurred to fortify its innate immune function in foreign DNA clearance by myeloid lineage cell types.
Keywords:DNA Enzymes   DNA Methylation   Innate Immunity   Interferon   RNA Editing   DNA Deamination   DNA Demethylation   Foreign DNA Restriction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号