首页 | 本学科首页   官方微博 | 高级检索  
     


Nanostructured materials for magnetic biosensing
Affiliation:1. Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU) and BCMaterials, 48080 Bilbao, Spain;2. Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia;3. Institute of Electrophysics, RAS, Urals Branch, 620016 Ekaterinburg, Russia;4. SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao, Spain
Abstract:BackgroundMagnetic nanoparticles (MNPs) are at the leading edge of the field of biomedical applications and magnetic biosensing.MethodsMNPs were fabricated by electrophysical methods of the laser target evaporation (LTE) and spark discharge with electrodynamic acceleration of plasma jumpers (SD). Synthesis of polyacrylamide hydrogel was done in the presence of Fe2O3 MNPs in different concentrations obtained by LTE. [FeNi/Ti]3/Cu/[Ti/FeNi]3/Ti multilayers for giant magnetoimpedance (GMI) based sensitive elements were prepared by rf-sputtering for testing a biosensor prototype.ResultsIron oxide MNPs, ferrofluids, ferrofluids contacting with biological systems, synthetic ferrogels mimicking natural tissues – are the steps of the discussed in this work development of bionanomaterials. Thorough the structural and magnetic studies of a multilayered sensitive element, MNPs and ferrogels insure the complete characterization of biosensor prototype. The GMI responses were carefully evaluated in initial state and in the presence of ferrogel with known concentration of MNPs. SD MNPs had the smallest 5–8 nm size. This nanomaterial was characterized by large internal strains of the order of 25 × 10 3, which can play an important role for the interaction with different biosystems.ConclusionsIron oxide MNPs were fabricated by LTE and SD methods. SD MNPs had the smallest 5–8 nm size and large internal strains of the order of 25 × 10 3. Designed GMI biosensor prototype allowed precise evaluation of the stray field of the MNPs present in the ferrogel by evaluating the systematic changes of the GMI in a 20–400 MHz frequency range.General significanceThis work summarizes recent developments in the field of nanomaterials potentially applicable in magnetic biosensing.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号