首页 | 本学科首页   官方微博 | 高级检索  
     


Quinolinic acid, alpha-picolinic acid, fusaric acid, and 2,6-pyridinedicarboxylic acid enhance the Fenton reaction in phosphate buffer.
Authors:H Iwahashi  H Kawamori  K Fukushima
Affiliation:Department of Chemistry, Wakayama Medical College, Japan.
Abstract:Quinolinic acid, alpha-picolinic acid, fusaric acid, and 2,6-pyridinedicarboxylic acid enhanced the Fenton reaction in phosphate buffer, respectively. The enhancement by quinolinic acid, alpha-picolinic acid, fusaric acid, and 2,6-pyridinedicarboxylic acid of the Fenton reaction may be partly related to their respective actions in the biological systems such as a neurotoxic effect (quinolinic acid), a marked growth-inhibitory action on rice seeding (alpha-picolinic acid and fusaric acid), and an antiseptic (2,6-pyridinedicarboxylic acid). The ultraviolet-visible absorption spectrum of the mixture of alpha-picolinic acid with ferrous ion showed a characteristic visible absorbance band with a lambda(max) at 443 nm, suggesting that alpha-picolinic acid chelate of Fe2+ ion forms in the solution. Similar characteristic visible absorbance band was also observed for the mixture of Fe2+ ion with quinolinic acid (or fusaric acid, or 2,6-pyridinedicarboxylic acid). The chelation seems to be related to the enhancement by quinolinic acid, alpha-picolinic acid, fusaric acid, and 2,6-pyridinedicarboxylic acid of the Fenton reaction. alpha-Picolinic acid was reported to be a toxic substance isolated from the culture liquids of blast mould (Piricularia oryzae CAVARA). On the other hand, it has also been known that chlorogenic acid protects rice plants from the blast disease. The chlorogenic acid inhibited the formation of the hydroxyl radical in the reaction mixture of alpha-picolinic acid, FeSO4(NH4)2SO4, and H2O2. Thus the inhibition may be a possible mechanism of the protective action of the chlorogenic acid against the blast disease.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号