首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation
Authors:Liu Ting Xi  Becker Michael W  Jelinek Jaroslav  Wu Wen-Shu  Deng Min  Mikhalkevich Natallia  Hsu Karl  Bloomfield Clara D  Stone Richard M  DeAngelo Daniel J  Galinsky Ilene A  Issa Jean-Pierre  Clarke Michael F  Look A Thomas
Institution:Laboratory of Development and Diseases, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Abstract:Interstitial loss of all or part of the long arm of chromosome 5, or del(5q), is a frequent clonal chromosomal abnormality in human myelodysplastic syndrome (MDS, a preleukemic disorder) and acute myeloid leukemia (AML), and is thought to contribute to the pathogenesis of these diseases by deleting one or more tumor-suppressor genes. Although a major commonly deleted region (CDR) has been delineated on chromosome band 5q31.1 (refs. 3-7), attempts to identify tumor suppressors within this band have been unsuccessful. We focused our analysis of gene expression on RNA from primitive leukemia-initiating cells, which harbor 5q deletions, and analyzed 12 genes within the CDR that are expressed by normal hematopoietic stem cells. Here we show that the gene encoding alpha-catenin (CTNNA1) is expressed at a much lower level in leukemia-initiating stem cells from individuals with AML or MDS with a 5q deletion than in individuals with MDS or AML lacking a 5q deletion or in normal hematopoietic stem cells. Analysis of HL-60 cells, a myeloid leukemia line with deletion of the 5q31 region, showed that the CTNNA1 promoter of the retained allele is suppressed by both methylation and histone deacetylation. Restoration of CTNNA1 expression in HL-60 cells resulted in reduced proliferation and apoptotic cell death. Thus, loss of expression of the alpha-catenin tumor suppressor in hematopoietic stem cells may provide a growth advantage that contributes to human MDS or AML with del(5q).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号