首页 | 本学科首页   官方微博 | 高级检索  
     


Change in the viscoelastic properties of agarose gel by HAp precipitation by osteoblasts cultured in an agarose gel matrix
Authors:Yohei Hanazaki  Daisuke Ito  Kazuya Furusawa  Akimasa Fukui  Naoki Sasaki
Affiliation:1. Department of Lifescience, Graduate School of Lifescience, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Japan
2. Laboratory of Biophysics, Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Japan
Abstract:The viscoelastic properties of cell-seeded agarose gel were measured as a function of culture time. Because the seeded cells, MC3T3-E1, were osteoblast-like cells, the system can be regarded as a model osteogenesis system. For all specimens the characteristic stress relaxation curve of agarose gel was observed—a large relaxation up to 104 s followed by a gel plateau, where the former was attributed to molecular motion of polymer chains between two adjacent cross-links of the gel and the latter to the elasticity of the gel network. The viscoelasticity was quantified by fitting stress relaxation data to an empirical equation. The relaxation time and its distribution did not change with culture time. The initial and equilibrium moduli, E 0 and E e, respectively, and relaxation strength, ΔE = E 0 ? E e, did not change up to day 15 of culture but changed significantly at day 18 of culture. The change in ΔE with culture period correlated well with that in E 0. The changes in the mechanical properties of the cell-seeded agarose gel system were explained in terms of the function of MC3T3-E1 in precipitating calcium phosphate mineral particles. The precipitation was detected by alizarin red S staining of the system at day 9 of culture. The precipitated calcium phosphate was confirmed to be hydroxyapatite (HAp) and the amount of HAp increased monotonically with culturing time, both of which were observed by X-ray diffraction studies. The dependence of the modulus of the composite on mineral fraction is discussed. A simple model of mixing of the components based on the continuum material concept was not applicable, but a model considering percolation of mineral particles in a network chain with culture time was suitable to explain the observed results. The results may be particularly important for predicting the stiffness of functionally engineered bony tissue implanted in a fractured bone.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号