首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug pentostam
Authors:Zhou Yao  Messier Nadine  Ouellette Marc  Rosen Barry P  Mukhopadhyay Rita
Institution:Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
Abstract:Arsenicals and antimonials are first line drugs for the treatment of trypanosomal and leishmanial diseases. To create the active form of the drug, Sb(V) must be reduced to Sb(III). Because arsenic and antimony are related metalloids, and arsenical resistant Leishmania strains are frequently cross-resistant to antimonials, we considered the possibility that Sb(V) is reduced by a leishmanial As(V) reductase. The sequence for the arsenate reductase of Saccharomyces cerevisiae, ScAcr2p, was used to clone the gene for a homologue, LmACR2, from Leishmania major. LmACR2 was able to complement the arsenate-sensitive phenotype of an arsC deletion strain of Escherichia coli or an ScACR2 deletion strain of Saccharomyces cerevisiae. Transfection of Leishmania infantum with LmACR2 augmented Pentostam sensitivity in intracellular amastigotes. LmACR2 was purified and shown to reduce both As(V) and Sb(V). This is the first report of an enzyme that confers Pentostam sensitivity in intracellular amastigotes of Leishmania. We propose that LmACR2 is responsible for reduction of the pentavalent antimony in Pentostam to the active trivalent form of the drug in Leishmania.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号