Anomalous Effect of Permeant Ion Concentration on Peak Open Probability of Cardiac Na+ Channels |
| |
Authors: | Claire Townsend Hali A. Hartmann Richard Horn |
| |
Affiliation: | From the *Department of Physiology, Institute of Hyperexcitability, Jefferson Medical College, Philadelphia, Pennsylvania 19107; and ‡Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030-3411 |
| |
Abstract: | Human heart Na+ channels were expressed transiently in both mammalian cells and Xenopus oocytes, and Na+ currents measured using 150 mM intracellular Na+. Decreasing extracellular permeant ion concentration decreases outward Na+ current at positive voltages while increasing the driving force for the current. This anomalous effect of permeant ion concentration, especially obvious in a mutant (F1485Q) in which fast inactivation is partially abolished, is due to an alteration of open probability. The effect is only observed when a highly permeant cation (Na+, Li+, or hydrazinium) is substituted for a relatively impermeant cation (K+, Rb+, Cs+, N -methylglucamine, Tris, choline, or tetramethylammonium). With high concentrations of extracellular permeant cations, the peak open probability of Na+ channels increases with depolarization and then saturates at positive voltages. By contrast, with low concentrations of permeant ions, the open probability reaches a maximum at approximately 0 mV and then decreases with further depolarization. There is little effect of permeant ion concentration on activation kinetics at depolarized voltages. Furthermore, the lowered open probability caused by a brief depolarization to +60 mV recovers within 5 ms upon repolarization to −140 mV, indicative of a gating process with rapid kinetics. Tail currents at reduced temperatures reveal the rapid onset of this gating process during a large depolarization. A large depolarization may drive a permeant cation out of a site within the extracellular mouth of the pore, reducing the efficiency with which the channel opens. |
| |
Keywords: | sodium channels gating single channel recording kinetics |
|
|