首页 | 本学科首页   官方微博 | 高级检索  
     


The dynamics of formation of the O2-Co bond in the cobalt(II) cyclidene complexes
Authors:E.V. Rybak-Akimova   K. Marek   M. Masarwa  D.H. Busch
Affiliation:

Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA

Abstract:The kinetics of O2 binding to a vacant coordination site on the cobalt(II) ion have been determined, revealing a radical-like character for the reaction. Reversible oxygenation of Co(II) cyclidenes (C4, C5, C6, C8, C12-bridged and unbridged) was studied by a cryogenic stopped-flow method. In the presence of axial base, kinetic parameters are insensitive to the nature of the solvent, and negative entropies of activation suggest that dissociation of a solvent molecule is not the rate-determining step for the dioxygen binding process. This is in contrast to the behavior of previously studied Co(II) complexes. A very low activation energy (1–4 kcal mol−1), typical of diffusion controlled processes, was found for dioxygen binding. The binding rate constants for the highest affinity complexes (108 M−1 s−1) are comparable to the values for natural dioxygen carriers. The size of the lacuna primarily affects the dioxygen binding rates, while the axial bases influence the dioxygen dissociation rates.
Keywords:Kinetics   Oxygen binding   Cobalt complexes   Macrocyclic complexes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号