首页 | 本学科首页   官方微博 | 高级检索  
     


An integrated model for evaluating hydrology,hydrodynamics, salinity and vegetation cover in a coastal desert wetland
Authors:Kate H. Huckelbridge  Mark T. Stacey  Edward P. Glenn  John A. Dracup
Affiliation:1. U.S. Geological Survey, Denver Federal Center, Box 25046, MS-980, Denver, CO 80225, United States;2. Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056, United States;3. Department of Geosciences, University of Arizona, Tucson, AZ 85721, United States
Abstract:An integrated model describing hydrology, hydrodynamics, salt dynamics and vegetation was developed to predict the evolution of the Ciénega de Santa Clara, a non-tidal, anthropogenic wetland located in the Colorado River Delta. The Ciénega, an important part of the Delta ecosystem, is supported by saline groundwater from the U.S. that is sent to Mexico to control salinity in the U.S. The future of this water source is uncertain, and thus, the model was developed to predict how the Ciénega would respond to changes in the quantity and salinity of its inflow. Over the calibration period, 1993–2007, modeled results of wetland surface area, the fraction of the wetland covered in vegetation and salinity concentrations compare well to actual data. The model shows that between 1993 and 2007 evapotranspiration rates range from 0 to 8 mm/day, wetland surface area increases 44% from 4500 to 6500 ha, the fraction of the wetland covered in vegetation decreases slightly from 0.92 to 0.88, and the mean salinity concentration in the wetland increases from 3100 to 6700 ppm. The model was used to run nine hypothetical scenarios, representing the range of inflow quantity and salinity to the Ciénega that could occur if the source of the inflow is altered, including the possible re-opening of the Yuma Desalting plant. Model results show that the Ciénega ecosystem is more sensitive to changes in salinity than to changes in flow. However, in almost all cases, an increase in salinity and/or a decrease in flow would cause a significant decrease in vegetation cover, compromising a large portion of the habitat currently available to wildlife at the Ciénega.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号