首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transgenic indica Rice Expressing ns-LTP-Like Protein Shows Enhanced Resistance to Both Fungal and Bacterial Pathogens
Authors:Rajesh Narhari Patkar  Bharat Bhushan Chattoo
Institution:(1) Department of Microbiology and Biotechnology Centre, Faculty of Science, M.S. University of Baroda, Vadodara, 390002, Gujarat, India
Abstract:Antimicrobial peptides (AMPs) from plant seeds, known to inhibit pathogen growth have a great potential in developing transgenic plants resistant to disease. Some of the nonspecific-lipid transfer proteins (ns-LTP) that facilitate in vitro transport of lipids, show antimicrobial activity in vitro. Rice seeds also contain ns-LTPs; however, these genes are expressed weakly in seedlings. We have transformed Pusa Basmati 1, an elite indica rice cultivar, with the gene for Ace-AMP1 from Allium cepa, coding for an effective antimicrobial protein homologous to ns-LTPs. The gene for Ace-AMP1 was cloned under an inducible rice phenylalanine ammonia-lyase (PAL) or a constitutive maize ubiquitin (UbI) promoter. Ace-AMP1 was expressed in transgenic lines and secreted in the apoplastic space. Protein extracts from leaves of transgenic plants inhibited three major rice pathogens, Magnaporthe grisea, Rhizoctonia solani and Xanthomonas oryzae, in vitro. Enhanced resistance against these pathogens was observed in in planta assays, and the degree of resistance correlating with the levels of Ace-AMP1 with an average increase in resistance to blast, sheath blight, and bacterial leaf blight disease by 86%, 67%, and 82%, respectively. Importantly, transgenic rice plants, with stable integration and expression of Ace-AMP1, retained their agronomic characteristics while displaying enhanced resistance to both fungal and bacterial pathogens.
Keywords:Ace-AMP1  Genetic transformation  Magnaporthe grisea  Oryza sativa  Rhizoctonia solani  Xanthomonas oryzae
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号