首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The basic helix-loop-helix-zipper domain of TFE3 mediates enhancer-promoter interaction.
Authors:S E Artandi  C Cooper  A Shrivastava  and K Calame
Institution:Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032.
Abstract:Binding sites for three families of sequence-specific DNA-binding proteins, microE3, C/EBP, and OCT, are found in both the promoters and the intronic enhancer of the immunoglobulin heavy-chain gene. We have used a cotransfection system to investigate how proteins binding these sites may participate in enhancer-promoter interactions. Basic helix-loop-helix-zipper (BHLHZIP) proteins TFE3 and TFEB activate from a distance in this assay, but the basic zipper (BZIP) protein NF-IL6 and endogenous OCT-binding proteins do not. Our results suggest that remotely bound TFE3 is recruited to the initiation site by association with proximally bound TFE3; this interaction is mediated by the BHLHZIP domain and not by activation domains of TFE3. The BZIP domain of Ig/EBP lacks this activity, revealing an important functional difference between these structurally related dimerization domains. We also show that TFE3 can exist as a tetramer in solution and that tetramerization is determined by the HLHZIP domain. These data support a model in which protein-protein interactions between proximally and remotely bound TFE3 recruit TFE3 to the initiation site for activation. The IgH gene is the first example of a cellular gene in which proximal and distal binding sites are found for a protein capable of mediating enhancer-promoter interaction.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号