首页 | 本学科首页   官方微博 | 高级检索  
     


PQN and DQN: algorithms for expression microarrays
Authors:Liu Wei-min  Li Rui  Sun James Z  Wang Jing  Tsai Julie  Wen Wei  Kohlmann Alexander  Williams P Mickey
Affiliation:Roche Molecular Systems, Inc., 4300 Hacienda Drive, Pleasanton, CA 94588, USA. wei-min.liu@roche.com
Abstract:
An ideal expression algorithm should be able to tell truly different expression levels with small false positive errors and be robust to assay changes. We propose two algorithms. PQN is the non-central trimmed mean of perfect match intensities with quantile normalization. DQN is the non-central trimmed mean of differences between perfect match and mismatch intensities with quantile normalization. The quantiles for normalization can be either empirical or theoretical. When array types and/or assay change in a study, the normalization to common quantiles at the probe set level is essential. We compared DQN, PQN, RMA, GCRMA, DCHIP, PLIER and MAS5 for the Affymetrix Latin square data and our data of two sets of experiments using the same bone marrow but different types of microarrays and different assay. We found the computation for AUC of ROC at affycomp.biostat.jhsph.edu can be improved.
Keywords:Gene expression   Hybridization   Microarray   Normalization   Robustness
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号