首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evidence of differential renal dysfunctions during exercise in men
Authors:J R Poortmans  E Blommaert  M Baptista  M E De Broe and E J Nouwen
Institution:(1) Chimie Physiologique, Institut Supérieur d'Education Physique et de Kinésithérapie, Université Libre de Bruxelles, Belgium, BE;(2) Department of Nephrology, University of Antwerp, Antwerp, Belgium, BE
Abstract:Post-exercise proteinuria is a common phenomenon in healthy subjects. Previous studies have used albumin (Alb) and β2-microglobulin (β2-m) molecules as representatives of high- and low-molecular-weight proteins. Recently, more specific markers of the human kidney proximal tubule have been used to identify the precise site of alterations. Active male subjects underwent two strenuous runs, one 400-m run and one 3000-m run. Urine was collected from the subjects before and after each event. Total protein (TP), Alb, α1-microglobulin (α1-m), β2-m, intestinal alkaline phosphatase (IAP), tissue-nonspecific alkaline phosphatase (TNAP) and N-acetyl-β-d-glucosaminidase (NAG) were determined for each sample. The short-distance run (400 m) resulted in the largest increases (P ≤ 0.05) in TP (31-fold), Alb (100-fold) and β2-m (164-fold) as compared to the long-distance run (3000-m). The α1-m excretion rates were increased to a lesser extent by the exercises. The IAP activity was slightly increased (+90%) by the 400-m run while the TNAP and NAG activities showed a 6.8-fold and a 3.6-fold increase, respectively, after this event. Smaller increases were recorded for the long-distance run (P = 0.05). To conclude, the present investigation showed that: (1) post-exercise proteinuria is related to the absolute intensity of exercise; (2) the impairment of protein reabsorption is revealed better by changes in Alb and β2-m; (3) changes in TNAP and NAG activities could reveal biochemical modifications that occur in the proximal tubule, particularly at the S1-S2 segment. Accepted: 31 January 1997
Keywords:Exercise  Urine  Protein  Glomerulus  Tubule
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号