首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Meningococcal resistance to antimicrobial peptides is mediated by bacterial adhesion and host cell RhoA and Cdc42 signalling
Authors:Raquel Tavares  Ann‐Beth Jonsson
Institution:Department of Molecular Biosciences, The Wenner‐Gren Institute, Stockholm University, , Stockholm, Sweden
Abstract:Antimicrobial peptides (AMPs) constitute an essential part of the innate immune defence. Pathogenic bacteria have evolved numerous strategies to withstand AMP‐mediated killing. The influence of host epithelia on bacterial AMP resistance is, however, still largely unknown. We found that adhesion to pharyngeal epithelial cells protected Neisseria meningitidis, a leading cause of meningitis and sepsis, from the human cathelicidin LL‐37, the cationic model amphipathic peptide (MAP) and the peptaibol alamethicin, but not from polymyxin B. Adhesion to primary airway epithelia resulted in a similar increase in LL‐37 resistance. The inhibition of selective host cell signalling mediated by RhoA and Cdc42 was found to abolish the adhesion‐induced LL‐37 resistance by a mechanism unrelated to the actin cytoskeleton. Moreover, N. meningitidis triggered the formation of cholesterol‐rich membrane microdomains in pharyngeal epithelial cells, and host cell cholesterol proved to be essential for adhesion‐induced resistance. Our data highlight the importance of Rho GTPase‐dependent host cell signalling for meningococcal AMP resistance. These results indicate that N. meningitidis selectively exploits the epithelial microenvironment in order to protect itself from LL‐37.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号