首页 | 本学科首页   官方微博 | 高级检索  
     


The reactions of OH radicals with D-ribose in deoxygenated and oxygenated aqueous solution
Authors:Clemens von Sonntag  Miral Dizdaroglu
Affiliation:Institut für Strahlenchemie im Max-Planck-Institut fur Kohlenforschung. Stiftstrasse 34-36. D-4330 Mülheim a.d. Ruhr West Germany
Abstract:Aqueous solution ofD-ribose (10?2M) saturated with N2O and N2O/O2 (4/1) were γ-irradiated (dose rate: 3.85 x 1018 eV.g?1.h?1) at room temperature. The following products were identified:D-ribonic acid (1). D-erythro-pentos-2-ulose (2). D-erythro-pentos-4-ulose (3),D-erythro-pentos-3-ulose (4), D-ribo-pentodialdose (5), 2-deoxy-D-erythro-pentonic acid (6), 2-deoxypentos-3-ulose (7)(7), 4-deoxylpentos-3-ulose (8), 3-deoxypentos-4-ulose (9), 3-deoxypentos-2-ulose (10), 5-deoxypentos-4-ulose (11), erythrose (12), erythro-tetrodialdose (13), erythronic acid (14), threose/erythrulose (15). threonic acid (16), 2-deoxytetrose (17), and glyceraldehyde (18). In deoxygenated solutions, 13, 14, and 16 were absent. In the presence of oxygen, the formation of 611 and 17 was suppressed. From quantitative measurements, G-values were calculated for both deoxygenated and oxygenated conditions. Five different, primary, ribosyl radicals are formed which, in deoxygenated solution, undergo disproportionation reactions (to give 1-5), and transformations such as elimination of water and carbon monoxide followed by disproportionation reactions (to give6-12.17). Material-balance considerations indicate the formation of dimers (not measured). In oxygenated solutions, oxygen rapidly adds to the primary ribosyl radicals, thus preventing the transformation reactions, and the main products are 15 and 13. Possible mechanistic routes are discussed. The attack of HO radicals on D-ribose involves C-1, ~20%; C-2 and C-4, ~35%: C-3, ~ 20%; and C-5, ~25%
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号