首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hybridization and speciation
Authors:R Abbott  D Albach  S Ansell  J W Arntzen  S J E Baird  N Bierne  J Boughman  A Brelsford  C A Buerkle  R Buggs  R K Butlin  U Dieckmann  F Eroukhmanoff  A Grill  S H Cahan  J S Hermansen  G Hewitt  A G Hudson  C Jiggins  J Jones  B Keller  T Marczewski  J Mallet  P Martinez‐Rodriguez  M Möst  S Mullen  R Nichols  A W Nolte  C Parisod  K Pfennig  A M Rice  M G Ritchie  B Seifert  C M Smadja  R Stelkens  J M Szymura  R Väinölä  J B W Wolf  D Zinner
Institution:1. School of Biology, University of St Andrews, , St Andrews, UK;2. Institute of Biology and Environmental Sciences, Carl von Ossietzky‐University Oldenburg, , Oldenburg, Germany;3. Natural History Museum, , London, UK;4. Netherlands Centre for Biodiversity Naturalis, , RA Leiden, The Netherlands;5. CIBIO, , Vair?o, Portugal;6. Institut des Sciences de l'Evolution, CNRS, , Montpellier Cedex 5, France;7. Zoology and BEACON Center for the Study of Evolution in Action, Michigan State University, , East Lansing, MI, USA;8. Department of Ecology and Evolution, University of Lausanne, , Lausanne, Switzerland;9. Department of Botany, University of Wyoming, , Laramie, WY, USA;10. School of Biological and Chemical Sciences, Queen Mary University of London, , London, UK;11. Animal and Plant Sciences, The University of Sheffield, , Sheffield, UK;12. Evolution and Ecology Program, International Institute for Applied Systems Analysis, , Laxenburg, Austria;13. Department of Biology, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, , Oslo, Norway;14. Department of Tropical Ecology and Animal Biodiversity, University of Vienna, , Wien, Austria;15. Department of Biology, University of Vermont, , Burlington, VT, USA;16. School of Biological Sciences, University of East Anglia, , Norwich, UK;17. Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), , Madrid, Spain;18. Department of Zoology, University of Cambridge, , Cambridge, UK;19. Department of Biology, University of Konstanz, , Konstanz, Germany;20. Institute of Systematic Botany, University of Zurich, , Zurich, Switzerland;21. Royal Botanic Garden Edinburgh, , Edinburgh, UK;22. Genetics, Evolution and Environment, UCL, , London, UK;23. Organismic and Evolutionary Biology, Harvard University, , Cambridge, MA, USA;24. Department of Biology (Genetics), Universidad Autónoma de Madrid, , Madrid, Spain;25. EAWAG, , Dübendorf, Switzerland;26. Department of Biology, Boston University, , Boston, MA, USA;27. Max‐Planck Institute for Evolutionary Biology, , Pl?n, Germany;28. Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchatel, , Neuchatel, Switzerland;29. Department of Biology, University of North Carolina, , Chapel Hill, NC, USA;30. Department of Biological Sciences, Lehigh University, , Bethlehem, PA, USA;31. Senckenberg Museum of Natural History Goerlitz, , Goerlitz, Germany;32. CNRS Institut des Science de l'Evolution, Université Montpellier 2, , Montpellier, France;33. Institute of Integrative Biology, University of Liverpool, , Liverpool, UK;34. Institute of Zoology, Jagiellonian University, , Kraków, Poland;35. Finnish Museum of Natural History, University of Helsinki, , Helsinki, Finland;36. Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, , Uppsala, Sweden;37. Cognitive Ethology Laboratory, German Primate Center, , G?ttingen, Germany
Abstract:Hybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near‐instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial contexts within a single speciation event. We offer a perspective on the context and evolutionary significance of hybridization during speciation, highlighting issues of current interest and debate. In secondary contact zones, it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow. Theory and empirical evidence suggest the latter is more likely, except within and around strongly selected genomic regions. Hybridization may contribute to speciation through the formation of new hybrid taxa, whereas introgression of a few loci may promote adaptive divergence and so facilitate speciation. Gene regulatory networks, epigenetic effects and the evolution of selfish genetic material in the genome suggest that the Dobzhansky–Muller model of hybrid incompatibilities requires a broader interpretation. Finally, although the incidence of reinforcement remains uncertain, this and other interactions in areas of sympatry may have knock‐on effects on speciation both within and outside regions of hybridization.
Keywords:hybrid species  hybrid zone  incompatibility  introgression  reinforcement  reproductive barrier
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号