A comparison of calibration methods for stereo fluoroscopic imaging systems |
| |
Authors: | Kaptein Bart L Shelburne Kevin B Torry Michael R Giphart J Erik |
| |
Affiliation: | Leiden University Medical Center, Department of Orthopaedics and Division of Image Processing, Department of Radiology, Leiden, The Netherlands. |
| |
Abstract: | Stereo (biplane) fluoroscopic imaging systems are considered the most accurate and precise systems to study joint kinematics in vivo. Calibration of a biplane fluoroscopy system consists of three steps: (1) correction for spatial image distortion; (2) calculation of the focus position; and (3) calculation of the relative position and orientation of the two fluoroscopy systems with respect to each other. In this study we compared 6 methods for calibrating a biplane fluoroscopy system including a new method using a novel nested-optimization technique. To quantify bias and precision, an electronic digital caliper instrumented with two tantalum markers on radiolucent posts was imaged in three configurations, and for each configuration placed in ten static poses distributed throughout the viewing volume. Bias and precision were calculated as the mean and standard deviation of the displacement of the markers measured between the three caliper configurations. The data demonstrated that it is essential to correct for image distortion when sub-millimeter accuracy is required. We recommend calibrating a stereo fluoroscopic imaging system using an accurately machined plate and a calibration cube, which improved accuracy 2-3 times compared to the other calibration methods. Once image distortion is properly corrected, the focus position should be determined using the Direct Linear Transformation (DLT) method for its increased speed and equivalent accuracy compared to the novel nested-optimization method. The DLT method also automatically provides the 3D fluoroscopy configuration. Using the recommended calibration methodology, bias and precision of 0.09 and 0.05 mm or better can be expected for measuring inter-marker distances. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|