首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Calcium in the synergid cells and other regions of pearl millet ovaries
Authors:R Chaubal  B J Reger
Institution:(1) USDA, ARS, Richard B. Russell Research Center, P.O. Box 5677, 30613 Athens, GA, Greece
Abstract:Summary The synergids and other cells of mature, unpollinated pearl millet ovaries were investigated using: (1) freeze-substitution fixation in conjunction with scanning electron microscope observations and energy-dispersive X-ray microanalysis to localize total calcium (Ca) and other elements, and (2) antimonate precipitation to selectively localize loosely sequestered, exchangeable calcium (Ca++). In freeze-fixed ovaries, the synergid cells, ovary wall, nucellus, and other regions of the ovary displayed, respectively and relatively, extremely high, high, moderate, and low levels of Ca. In antimonate-fixed ovaries, Ca-containing antimonate precipitates exhibited similar distribution patterns. In ovaries fixed using the conventional 2% (w/v) antimonate in fixatives, the synergids were disrupted due to precipitate overload. In the ovary wall, precipitates were mainly located in the intercellular spaces. Some precipitates were observed at the micropyle and along the outer ovule integument, associated with diffuse extracellular material, and in the cell walls of nucellar cells proximal to the micropyle. Examination of precipitate distribution inside the synergids was possible in ovaries fixed using 0.5% (w/v) antimonate in the fixatives. Cytoplasmic organelles of all synergids examined exhibited variable states of disintegration. The amount of precipitates associated with the degenerated organelles appeared to be proportional to the degree of their degeneration. Distinct precipitates were localized in contiguous regions of the nucellar cells fused with the embryo sac, the micropylar half of the embryo sac wall, and the filiform apparatus. The results are discussed in relation to the involvement of Ca++ in mediating the functions of synergid cells during fertilization in angiosperms.On Specific Cooperative Agreement 58-43YK-8-0026 with the Department of Biochemistry, University of Georgia, Athens, GA 30602, USA
Keywords:Freeze-substitution  Antimonate precipitation  Energy dispersive X-ray microanalysis  Fertilization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号