首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of oxygen pressure on synthesis and export of nitrogenous solutes by nodules of cowpea
Authors:Craig A Atkins  Felix D Dakora  Paul J Storer
Institution:(1) Botany Department, University of Western Australia, 6009 Nedlands, WA, Australia
Abstract:Nodules of cowpea plants (Vigna unguiculata (L.) Walp. cv. Vita 3 :Bradyrhizobium CB756) cultured for periods of 23 d with their root systems maintained in atmospheres containing a range of partial pressures of O2 (pO2; 1–80%, v/v, in N2) formed and exported ureides (allantoin and allantoic acid) as the major products of fixation at all pO2 tested. In sub-ambient pO2 (1 and 2.5%) nodules contained specific activities of uricase (urate: O2 oxidoreductase; EC 1.7.3.3) and allantoinase (allantoin hydrolyase; EC 3.5.2.5) as much as sevenfold higher than in those from air. On a cell basis, uninfected cells in nodules from 1% O2 contained around five times the level of uricase. Except for NAD: glutamate synthase (EC 1.4.1.14), which was reduced in sub-ambient O2, the activities of other enzymes of ureide synthesis were relatively unaffected by pO2. Short-term effects of pO2 on assimilation of fixed nitrogen were measured in nodules of air-grown plants exposed to subambient pO2 (1, 2.5 or 5%, v/v in N2) and15N2. Despite a fall in total15N2 fixation, ureide synthesis and export was maintained at a high level except in 1% O2 where formation was halved. The data indicate that in addition to the structural and diffusional adaptations of cowpea nodules which allow the balance between O2 supply and demand to be maintained over a wide range of pO2, nodules also show evidence of biochemical adaptations which maintain and enhance normal pathways for the assimilation of fixed nitrogen. This work was supported by a grant from the Australian Research Council (to C.A.A.) and an Australian Development Assistance Bureau postgraduate fellowship (to F.D.D.).
Keywords:Bradyrhizobium            Oxygen pressure and root nodule function  Root nodules  Symbiosis (legume —  Rhizobium)  Ureide synthesis  Uricase            Vigna
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号