首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stable germ line transformation of a leafy vegetable crop amaranth (Amaranthus tricolor L.) mediated by Agrobacterium tumefaciens
Authors:Ajantaa Pal  Swasti S Swain  Anath B Das  Arup K Mukherjee  Pradeep K Chand
Institution:1. Plant Cell & Tissue Culture Facility, Post-Graduate Department of Botany, Utkal University, Bhubaneswar, 751 004,, Orissa, India
2. Division of Plant Biotechnology, Regional Plant Resource Centre, Bhubaneswar, 751 015,, Orissa, India
3. Department of Agricultural Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, 751 003,, Orissa, India
4. Division of Crop Protection, Central Institute for Cotton Research, Shankarnagar, Nagpur, 440010, India
Abstract:We have optimized a procedure for genetic transformation of a major leafy vegetable crop, Amaranthus tricolor L., using epicotyl explant co-cultivation with Agrobacterium tumefaciens. Two disarmed A. tumefaciens strains EHA 105 and LBA 4404, both carrying the binary plasmid p35SGUSINT harboring the neomycin phosphotransferase II gene (nptII) and the β-glucuronidase gene (gus), were evaluated as vector systems. The former displayed a higher transforming efficiency. Several key factors influencing the transformation events were optimized. The highest percentage of transformed shoots (24.24%) was achieved using hand-pricked epicotyl explants, a 10-min infection period, with 100 μM acetosyringone-pretreated Agrobacterium culture corresponding to OD600???0.6 and diluted to 109 cells ml?1, followed by 4 d co-cultivation in the regeneration medium. Putative transformed explants capable of forming shoots were selected on medium supplemented with 75 μg?ml?1 kanamycin, and transient as well as stable glucuronidase expression was determined by histochemical analysis. From a total of 48 selected shoot lines derived from independent transformation events with epicotyl explants co-cultivated with EHA 105, 32 showed positive PCR amplification for both the nptII and gus genes. Germ line transformation and transgene stability were evident in progeny of primary transformed plants (T0). Among T1 seedlings of 12 selected transgenic plant lines, kanamycin-resistant and kanamycin-sensitive seedlings segregated in a ratio typical of the Mendelian monohybrid pattern (3:1) as verified by the chi-square (χ 2) test. Southern hybridization of genomic DNA from kanamycin-resistant T1 transgenic segregants to an nptII probe substantiated stable integration of the transgene. Neomycin phosphotransferase (NPTII) activity was detected in leaf protein extracts of selected T1 transgenic plants, thereby confirming stable expression of the nptII gene.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号