首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of soil quality indicators for assessing the effect of different tillage practices through a soil quality index in a semi-arid environment
Affiliation:1. Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252, India;2. Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
Abstract:Tillage is known to potentially affect soil quality in various ways. In this study, a soil quality index (SQI) was developed by quantifying several soil attributes either sensitive or insensitive to physical disturbance, using factor analysis as a dimension reduction technique, in order to discriminate different tillage systems. Soil properties including physical (MWD), chemical (pH, organic C, total N, available P and POM contents) and microbial (MBC, MBN, PCM, PNM and three enzymes) parameters were measured to establish a minimum data set (MDS) for the assessment of overall SQI. The soil attributes were determined on samples (0–20 cm depth) collected under moldboard (MP) and disk (DP) plows as conventional tillage (CT), and rotary (RP) and chisel (CP) plows as reduced tillage (RT) systems with a similar plant C input rate and cover crop over a period of six years (2005–2011) in a semi-arid calcareous soil (Calcixerepts) from Central Iran. Results indicated a clear difference in soil quality among the tillage systems with a significant increase of SQI under RT over time, particularly under CP practices. Although RT improved most soil microbial attributes, not all attributes contributed to SQI because of their close interrelationship. The final SQI consisted only of geometric mean of microbial activity (GMA, the square root of the product of PCM and PNM) and geometric mean of enzyme activity (GME, the cube root of the product of enzyme activities). Soil GME and GMA were found to be as key indicators contributing 55% and 36% to SQI, respectively. Therefore, the GME and GMA were the most important indicators effectively discriminating tillage systems, and could be used to monitor the enhancement of soil quality under RT in this semiarid environment. The influence of tillage year on SQI was greater than that of tillage practices. In conclusion, RT systems were characterized by a higher value of SQI, suggesting a good recovery of soil capacity and functions after abandoning CT in the studied area. Smallholder farmers should therefore be aware of the potential for high soil quality in future as a result of continuing RT systems, especially with surface tillage using CP practices.
Keywords:Enzyme activity  Microbial properties  Multivariate analysis  Soil function  Soil quality index  Reduced tillage
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号