Free oligosaccharides in the cytosol of Caenorhabditis elegans are generated through endoplasmic reticulum-golgi trafficking |
| |
Authors: | Kato Toshihiko Kitamura Kumiko Maeda Megumi Kimura Yoshinobu Katayama Takane Ashida Hisashi Yamamoto Kenji |
| |
Affiliation: | Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa, Kyoto, Japan. |
| |
Abstract: | ![]() Free oligosaccharides (FOSs) in the cytosol of eukaryotic cells are mainly generated during endoplasmic reticulum (ER)-associated degradation (ERAD) of misfolded glycoproteins. We analyzed FOS of the nematode Caenorhabditis elegans to elucidate its detailed degradation pathway. The major FOSs were high mannose-type ones bearing 3-9 Man residues. About 94% of the total FOSs had one GlcNAc at their reducing end (FOS-GN1), and the remaining 6% had two GlcNAc (FOS-GN2). A cytosolic endo-beta-N-acetylglucosaminidase mutant (tm1208) accumulated FOS-GN2, indicating involvement of the enzyme in conversion of FOS-GN2 into FOS-GN1. The most abundant FOS in the wild type was Man(5)GlcNAc(1), the M5A' isomer (Manalpha1-3(Manalpha1-6)Manalpha1-6(Manalpha1-3)Manbeta1-4GlcNAc), which is different from the corresponding M5B' (Manalpha1-2Manalpha1-2Manalpha1-3(Manalpha1-6)Manbeta1-4GlcNAc) in mammals. Analyses of FOS in worms treated with Golgi alpha-mannosidase I inhibitors revealed decreases in Man(5)GlcNAc(1) and increases in Man(7)GlcNAc(1). These results suggested that Golgi alpha-mannosidase I-like enzyme is involved in the production of Man(5-6)-GlcNAc(1), which is unlike in mammals, in which cytosolic alpha-mannosidase is involved. Thus, we assumed that major FOSs in C. elegans were generated through Golgi trafficking. Analysis of FOSs from a Golgi alpha-mannosidase II mutant (tm1078) supported this idea, because GlcNAc(1)Man(5)GlcNAc(1), which is formed by the Golgi-resident GlcNAc-transferase I, was found as a FOS in the mutant. We concluded that significant amounts of misfolded glycoproteins in C. elegans are trafficked to the Golgi and are directly or indirectly retro-translocated into the cytosol to be degraded. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|