首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stability of a model beta-sheet in water.
Authors:D J Tobias  S F Sneddon  C L Brooks
Institution:Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213.
Abstract:We have used molecular dynamics simulations to determine the stability in water of a model beta-sheet formed by two alanine dipeptide molecules with two intermolecular hydrogen bonds in the closely spaced antiparallel arrangement. In this paper we describe our computations of the binding free energy of the model sheet and a portion of the free energy surface as a function of a reaction co-ordinate for sheet formation. We used the free energy surface to identify stable conformations along the reaction co-ordinate. To determine whether or not the model sheet with two hydrogen bonds is more stable than a single amide hydrogen bond in water, we compared the results of the present calculations to results from our earlier study of linear hydrogen bond formation between two formamide molecules (the formamide "dimer"). The free energy surfaces for the sheet and formamide dimer each have two minima corresponding to locally stable hydrogen-bonded and solvent-separated configurations. The binding free energies of the model sheet and the formamide dimer are -5.5 and -0.34 kcal/mol, respectively. Thus, the model sheet with two hydrogen bonds is quite stable while the simple amide hydrogen bond is only marginally stable. To understand the relative stabilities of the model sheet and formamide dimer in terms of solute-solute and solute-water interactions, we decomposed the free energy differences between hydrogen-bonded and solvent-separated conformations into energetic and entropic contributions. The changes in the peptide-peptide energy and the entropy are roughly twice as large for the sheet as they are for the formamide dimer. The magnitude of the peptide-water energy difference for the sheet is less than twice (by about 3.5 kcal/mol) that for the formamide dimer, and this accounts for the stability of the sheet. The presence of the side-chains and/or blocking groups apparently prevents the amide groups in the sheet from being solvated as favorably in the separated arrangement as in the formamide dimer, where the amide groups are completely exposed to the solvent.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号