首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of blood flow on lung ACE kinetics: evidence for microvascular recruitment.
Authors:H J Toivonen  J D Catravas
Institution:Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta 30912-2300.
Abstract:The parameter Amax/Km (product of reactant enzyme mass in perfused microvessels and the constant kcat/Km), calculated from in vivo assays of pulmonary endothelial ectoenzymes (e.g., angiotensin-converting enzyme, ACE), can provide estimates of the perfused pulmonary microvascular surface area (PMSA) in the absence of enzyme dysfunction. We examined the relationship between PMSA and pulmonary blood flow (Qb) in anesthetized rabbits placed on total heart bypass, using 3H]benzoyl-Phe-Ala-Pro (BPAP) as the ACE substrate. When Qb was increased from 250 to 1,100 ml/min, at zone 3 conditions, pulmonary arterial pressure increased, pulmonary vascular resistance (PVR) decreased, and Amax/Km increased linearly, reflecting increasing PMSA. When only the left lung was perfused, increasing Qb from 250 to 636 +/- 17 ml/min (the last value representing fully recruited and/or distended vascular bed), PVR decreased, while Amax/Km increased. When Qb was further increased to 791 +/- 44 ml/min, both PVR and Amax/Km remained unchanged, confirming the lack of additional changes in PMSA. We conclude that Amax/Km provides a sensitive indication of PMSA, because it 1) increases with increasing Qb and decreasing PVR, 2) reaches a maximum at Qb values that correspond to the minimal values in PVR, and 3) like PVR, did not change with further increases in Qb. Compared with predicted changes in PMSA produced by either microvascular recruitment alone or distension alone, our data indicate that recruitment is a larger contributor to the observed increase in PMSA.
Keywords:
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》浏览原始摘要信息
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号