首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of tyrosine phosphorylation prevents thrombin-induced mitogenesis, but not intracellular free calcium release, in vascular smooth muscle cells.
Authors:R H Weiss  R Nuccitelli
Affiliation:Department of Medicine, University of California, Davis 95616.
Abstract:alpha-Thrombin, a G-protein-coupled receptor agonist, is mitogenic for neonatal vascular smooth muscle (VSM) cells, but it also causes secretion of the tyrosine kinase-coupled receptor agonist platelet-derived growth factor (PDGF). In order to determine the role of growth factors with tyrosine kinase-coupled receptors in thrombin's mitogenic signal transduction cascade, the synergistic effect of basic fibroblast growth factor (bFGF) in this system was examined. While bFGF itself is a growth factor for VSM cells, it causes a 1.7-fold synergistic effect when added together with thrombin. Herbimycin A, a specific tyrosine kinase inhibitor, both decreases thrombin-induced mitogenesis by greater than 90% and abolishes tyrosine phosphorylation of phospholipase C (PLC)-gamma-1. The magnitude and time course of the increase in intracellular free calcium concentration in response to thrombin is comparable in both the presence and absence of herbimycin A. These results provide evidence that herbimycin A specifically inhibits PLC-gamma-1 tyrosine phosphorylation without affecting VSM cell viability or calcium release. Furthermore, tyrosine phosphorylation is a necessary step in thrombin's mitogenic signal transduction cascade, but it is not essential for thrombin-induced release of calcium from intracellular stores. These data suggest that a tyrosine kinase, possibly supplied by the bFGF receptor, plays an essential role in thrombin-induced mitogenesis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号