首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The S0 state of photosystem II induced by hydroxylamine: differences between the structure of the manganese complex in the S0 and S1 states determined by X-ray absorption spectroscopy
Authors:R D Guiles  V K Yachandra  A E McDermott  J L Cole  S L Dexheimer  R D Britt  K Sauer  M P Klein
Institution:Lawrence Berkeley Laboratory, Department of Chemistry, University of California, Berkeley 94720.
Abstract:Hydroxylamine at low concentrations causes a two-flash delay in the first maximum flash yield of oxygen evolved from spinach photosystem II (PSII) subchloroplast membranes that have been excited by a series of saturating flashes of light. Untreated PSII membrane preparations exhibit a multiline EPR signal assigned to a manganese cluster and associated with the S2 state when illuminated at 195 K, or at 273 K in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). We used the extent of suppression of the multiline EPR signal observed in samples illuminated at 195 K to determine the fraction of PSII reaction centers set back to a hydroxylamine-induced S0-like state, which we designate S0*. The manganese K-edge X-ray absorption edges for dark-adapted PSII preparations with or without hydroxylamine are virtually identical. This indicates that, despite its high binding affinity to the oxygen-evolving complex (OEC) in the dark, hydroxylamine does not reduce chemically the manganese cluster within the OEC in the dark. After a single turnover of PSII, a shift to lower energy is observed in the inflection of the Mn K-edge of the manganese cluster. We conclude that, in the presence of hydroxylamine, illumination causes a reduction of the OEC, resulting in a state resembling S0. This lower Mn K-edge energy of S0*, relative to the edge of S1, implies the storage and stabilization of an oxidative equivalent within the manganese cluster during the S0----S1 state transition. An analysis of the extended X-ray absorption fine structure (EXAFS) of the S0* state indicates that a significant structural rearrangement occurs between the S0* and S1 states. The X-ray absorption edge position and the structure of the manganese cluster in the S0* state are indicative of a heterogeneous mixture of formal valences of manganese including one Mn(II) which is not present in the S1 state.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号