A conserved motif common to the histone acetyltransferase Esa1 and the histone deacetylase Rpd3 |
| |
Authors: | Adachi Naruhiko Kimura Akatsuki Horikoshi Masami |
| |
Affiliation: | The Horikoshi Gene Selector Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), 5-9-6 Tokodai, Tsukuba, Ibaraki 300-2635 Japan. |
| |
Abstract: | Post-translational modification of histones enables dynamic regulation of chromatin structure in eukaryotes. Histone acetyltransferase (HAT) and histone deacetylase (HDAC) modify the N-terminal tails of histones by adding or removing acetyl groups to specific lysine residues. A particular pair of HAT (Esa1) and HDAC (Rpd3) is proposed to modify the same lysine residue in vitro and in vivo. Thus, HAT and HDAC might have similar structural and functional motifs. Here we show that HAT (Esa1 family) and HDAC (Rpd3 family) have similar amino acid stretches in the primary structures through evolution. We refer to this region as the "ER (Esa1-Rpd3) motif." In the tertiary structure of Esa1, the ER motif is located near the active center. In Rpd3, for which the tertiary structure remains unclear, we demonstrate that the ER motif contains the same secondary structure as found in Esa1 by circular dichroism analysis. We did alanine-scanning mutagenesis and found that the ER motif regions of Esa1 or Rpd3 are required for HAT activity of Esa1 or HDAC activity of Rpd3, respectively. Our discovery of the ER motif present in the pair of enzymes (HAT and HDAC) indicates that HAT and HDAC have common structural bases, although they catalyze the reaction with opposite functions. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|