首页 | 本学科首页   官方微博 | 高级检索  
     

机器学习方法在CRISPR/Cas9系统中的应用
引用本文:张桂珊,杨勇,张灵敏,戴宪华. 机器学习方法在CRISPR/Cas9系统中的应用[J]. 遗传, 2018, 40(9): 704-723. DOI: 10.16288/j.yczz.18-135
作者姓名:张桂珊  杨勇  张灵敏  戴宪华
作者单位:中山大学电子与信息工程学院,广州 510006
基金项目:国家自然科学基金项目(61872396)
摘    要:
基于CRISPR/Cas9系统介导的第三代基因组定点编辑技术,已被广泛应用于基因编辑和基因表达调控等研究领域。如何提高该技术对基因组编辑的效率与特异性、最大限度降低脱靶风险一直是该领域的难点。近年来,机器学习为解决CRISPR/Cas9系统所面临的问题提供了新思路,基于机器学习的CRISPR/Cas9系统已逐渐成为研究热点。本文阐述了CRISPR/Cas9的作用机理,总结了现阶段该技术面临的基因组编辑效率低、存在潜在的脱靶效应、前间区序列邻近基序(PAM)限制识别序列等问题,最后对机器学习应用于优化设计高效向导RNA (sgRNA)序列、预测sgRNA的活性、脱靶效应评估、基因敲除、高通量功能基因筛选等领域的研究现状与发展前景进行了展望,以期为基因组编辑领域的研究提供参考。

关 键 词:CRISPR/Cas9  机器学习  sgRNA  脱靶效应  基因敲除  
收稿时间:2018-05-15

Application of machine learning in the CRISPR/Cas9 system
Affiliation:School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
Abstract:
The third generation of the CRISPR/Cas9-mediated genome fixed-point editing technology has been widely used in the field of gene editing and gene expression regulation. How to improve the on-target efficiency and specificity of this system, as well as reduce its off-target effects are always the bottleneck in its development. Machine learning provides novel methods to the problems of the CRISPR/Cas9 system, and CRISPR/Cas9-based machine learning has recently become a very hot research topic. In this review, we firstly outline the mechanism of the CRISPR/Cas9 system. Subsequently, we elaborate the current issues of CRISPR/Cas9, including low efficiency and potential off-target effects, and sequence-recognizing limitation from protospacer adjacent motif (PAM). Finally, we summarize the applications of methods within the machine learning framework for optimizing the CRISPR/Cas9 system, such as optimized single-guide RNA (sgRNA) design, CRISPR/Cas9 cleavage efficiency prediction, off-target effects evaluation, gene knock-out as well as high-throughput functional genetic screening and prospects for development.
Keywords:CRISPR/Cas9  machine learning  sgRNA  off-target effect  gene knock-out  
本文献已被 CNKI 等数据库收录!
点击此处可从《遗传》浏览原始摘要信息
点击此处可从《遗传》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号